Что такое сплав понятным языком

Сплавы металлов встречаются нам повсеместно, даже в условиях внедрения пластиков и прочих инновационных заменителей. В этом материале попробуем разобраться, что такое сплав и как всё это себе представить для понимания физики процесса.

Металлы в чистом виде используются крайне редко. Обычно металл обладает худшими значениями свойств (чаще механических свойств), по сравнению со сплавами. Правда говорить о том, что чистые металлы не используют — это совсем неправильно. В некоторых случаях нужен именно чистый материал, например для достижения нужных показателей электропроводности.

Давным-давно было случайно обнаружено, что если при переплавке меди добавить к ней ещё и олово, то получаемый состав (или сплав) имеет гораздо более высокие прочностные свойства. История не уточняет, кто именно и когда первый придумал использовать этот новый материал, который, по своей сути, является бронзой.

Металлические сплавы

Сплав — это материал, образуемый объединением двух или более компонентов и обладающий рядом специфических свойств. Сплав может содержать как металлические (пример — дюраль Al + Cu), так и неметаллические компоненты (самый яркий пример — сталь Fe + C).

В основе создания логики сплавов лежит логика композитных материалов. Несколько материалов в группе работают порой лучше, чем один чистый. Но называть сплавы композитами неправильно.

Также важно отметить, что появились сплавы металлов гораздо раньше, чем первые композиты. Бронзы использовались ещё до нашей эры для самых различных целей.

Интересно знать, что инженеры-материаловеды часто разрабатывали сплав для решения какой-то определенной задачи. Формулировалось техническое задание и обозначались условия работы будущего изделия, а специалисты старались «выжать» максимум.

Сплавов существует огромное количество. Именно поэтому была разработана специальная классификация всех имеющихся сплавов. Не будем сейчас останавливаться на этом вопросе, а поговорим о физике самого сплава и его строении.

Что представляет из себя сплав

Нужно осознать процесс появления сплава на физическом уровне. Именно это даст глубокое понимание вопроса.

Представьте себе, что вы взяли две жидкости и слили друг с другом. Получили что-то. Это что-то и можно считать будущим сплавом. Это расплав двух (или более) компонентов. Два расплавленных компонента в одной емкости выглядят также. Ещё больше путаницы, верно? Пример демонстрирует хаос системы в расплавленном состоянии.

Пока в емкости две перемешанных жидкости, мы видим что-то такое в её структуре:

Если взять жидкость и какое-нибудь нерастворимое желе, мы получим совсем иной результат. Компоненты могут расслоиться. Условно это выглядит так.

В итоге компоненты всё же могут раствориться друг в друге (вернемся к рисунку 1), а могут и не растворится — выйдет смесь. Очевидно, что если такую структуру (рисунок 2) зафиксировать (или кристаллизовать), то получится черти что. Поэтому, для получения сплава нужно добиться определенного состояния расплава.

Всё сказанное справедливо и для расплава. Сплав — это система из двух (или более) компонентов. Значит для того, чтобы их объединить, нужно как-то смешать их друг с другом.

На практике мы имеем один компонент будущего сплава в виде металлического куска и другой кусок второго компонента в виде куска.

Как их объединить? Логично! Нужно их переплавить в одной бочке и перемешать для достижения структуры на рисунке 1. Но это ещё не значит получить готовый сплав.

Как получают сплав

Для получения сплава нужно описанный выше расплав охладить, чтобы произошла кристаллизация и выстроились новые кристаллические решетки.

Но система может вести себя по-разному.

Материалы могут образовать гомогенную (однородную) смесь или сохранять гетерогенность (разнородность). Могут оказаться и вовсе несмешиваемыми.

Это справедливо как для их совместного расплавленного состояния, так и для уже застывшего кристаллизованного состояния.

Каким образом определить, что будет с теми или иными компонентами, объединенными в единую систему при разных температурах и условиях?

Тут нужны экспериментальные данные.

Некоторые основные тенденции можно предсказать по химическому составу и типу решеток исходных компонентов, а некоторые только изучить и зафиксировать.

Все знания об этом отражаются на так называемых диаграммах состояния — графиках, демонстрирующих характер взаимодействия компонентов при разных температурах и взаимных концентрациях.

На диаграмме можно увидеть образование неограниченной растворимости компонентов, механическую смесь или химическое соединение. Выбрали нужное соотношение и температуру, и вуа-ля, все сведения есть. Видим критические точки и фазовый состав. Это как график, только запутанный.

Есть и более сложные состояния, о которых мы в этом выпуске говорить не будем.

Физика процесса кристаллизации в сплаве

Мы переплавляем два компонента в одной емкости с целью изготовить металлический сплав. Погрузили туда компонент один и компонент два. Расплавили. Довели до жидкого состояния. Что такое жидкость с точки зрения физики?

Это неупорядоченный набор частиц — атомы в хаотичном состоянии, находящиеся на определенном расстоянии друг от друга.

Если в таком состоянии встретятся разные жидкости, то их атомы перемещаются в одну единую смесь (опять смотрим на рисунок 1 чуть выше).

Пока оно остается жидким, всё просто и понятно.

Теперь начнем охлаждать эту адовую смесь.

Поидее, все вещества должны вернуться к своей конфигурации.

Но мы устроили дестрой и растопили все решетки твердых тел исходных компонентов, которые поместили в чашу для плавления. Получили рисунок 1. Теперь это каша.

При охлаждении такой каши каждое из веществ будет стараться проявить свои свойства.

Будет пытаться образоваться кристаллическая решетка каждого из компонентов.

Одна решетка начнет формироваться, а другая — ещё нет. Свободные частички в расплаве начнут взаимодействовать с уже сформированной структурой. Делать они могут это по-разному — куда-то приклеиться, где-то зафиксироваться.

Мы получим или растворимость одного в другом (так называемый твердый раствор), или механическую смесь, или химическое соединение одного компонента с другим.

Что такое твердый раствор

Название ужасное, но всё просто. Мы имеем факт пересечения одной кристаллической решетки компонента 1 с частицами от другой компонента 2.

В жидком состоянии всё растворилось и частицы компонентов перемешались друг с другом.

Когда система начнет остывать, постепенно начнут формироваться и новые решетки. Начнет формироваться решетка первого компонента, а частички второго компонента начнут занимать место в её узлах, как люди в автобусе. По принципу кто быстрее. На деле всё, конечно же, посложнее.

Выходит, что атомы одного элемента залезут в решетку другого элемента и образуется новая решетка, содержащая как частицы одного компонента, так и другого.

Таким образом, твердыми растворами называют сплавы, в которых атомы растворимого компонента располагаются в кристаллической решетке компонента растворителя.

При этом возможны следующие варианты:

  • твёрдые растворы внедрения
  • замещения
  • вычитания

Внедрение — это когда в имеющуюся решетку одного компонента проникла частица другого компонента. Между всеми частицами появилось взаимодействие и образовался новый материал с новыми свойствами.

Твёрдый раствор замещения образуется в том случае, когда частички при затвердевании обмениваются с частичками в других решетках своим местоположением.

Более редкий случай — твердый раствор вычитания. Когда частички ушли со своих позиций, а на смену им ничего не пришло и сохранилась вакантная позиция.

Что такое химическое соединение

Более интересный случай — образование химического соединения. Возможен этот случай при соблюдении стехиометрии. Или одного и второго компонентов в жидком виде было ровно столько, что они способны создать химическое соединение, или прореагировать. Помимо количества, конечно же, важна и способность к реакции.

Как это представить на практике?

Как смешивание двух вариантов раствора для желе в жидком виде. Смешали апельсиновую основу и яблочную основу, дали образоваться желе и получили новый вкус.

Образовалось новое стойкое вещество с определенными ярко выраженными свойства, если желаете.

В итоге получим новый материал, или новый сплав, содержащий (иногда) интерметаллиды, карбиды, нитриды и другие стойкие соединения.

Что такое механическая смесь

Это один из самых не очевидных вариантов. По логике такая штука должна развалиться на куски в руках или рассыпаться, как сахар после намокания.

Такая штука образуется, если компоненты не могут образовать твёрдый раствор (нет растворимости) и не могут стать совместным новым химическим соединением.

При охлаждении такого расплава выпадают кристаллы одного компонента и кристаллы второго компонента. Ключевое слово ОДНОВРЕМЕННО. Затем они слепляются в общую структуру, но чем-то общим не являются. Нет (как вариант) такой прочности, как у хим.соединения.

Казалось бы, схема никуда не годная и сравнивать свойства такого сплава со сплавом, имеющим химическое соединение, бесполезно. Но мы никогда не говорим слово «плохо». Мы всегда говорим подходит или нет.

Так, тот же чугун, имеющий в своей структуре чистый графит, имеет отличные антифрикционные свойства, смазывая сам себя графитом при истирании.

Как получают сплавы

Теперь остается ещё один вопрос.

Как можно получить сплав? Ну один способ мы уже рассмотрели. Нужно переплавить всё в одной емкости и получить новый сплав литейным способом. Сделать отливку, в процессе кристаллизации которой и образуется новый материал.

Но можно ещё использовать методы порошковой металлургии. Смешать порошки исходных компонентов друг с другом, спрессовать, а затем обработать высокой температурой. В процессе спекания образуется новый сплав.

Есть и другие более сложные и менее распространенные способы — например, осаждение из растворов или напыление. Так или иначе, каждый из способов должен обеспечивать обозначенный выше принцип — дать перемешаться компонентам как следует и образовать собственно то, что мы называем сплавом.

Пару слов о том, от чего зависят свойства сплава

Свойства готового сплава зависят не только от химического состава, но и от условий их получения. Например, однородность готового сплава зависит от скорости охлаждения застывающего расплава.

На этом, наверное всё.

Ну и…Не забывайте про Телеграм проекта!

Оставьте комментарий

Прокрутить вверх